PHYSICS

- Two stones are projected with the same speed of 25 ms⁻¹ from the same point and have 1. the same range of 60 m. Find the difference in their time of flight. Note that if $\sin x = 0.6$, then $\sin 2x = 0.96$.
 - (C) $\sqrt{2}$ s (B) 1 s (A) 2 s

(B) 8 s

(B) <u>Based on Projectile Motion Q. 29</u> 1. $\sin 2\theta = gR / u^2 = 600 / 625 = 0.96.$ $\therefore \sin \theta = 0.6 \text{ or } 0.8$ As $t = (2u / g) \sin \theta$, t = 3 s or 4 s.

 $\therefore \Delta t = 1$ s.

(D) √3

(D) 7.5 s

The acceleration (in ms^{-2}) vs. time (in s) graph for a particle is shown. The particle 2. starts from rest and comes to rest again at time t =

(A) 9 s

(C) 8.5 s (A) Based on One Dimensional Motion Q. 128 Line slope, m = -4/(5-3) = -2. For area = 0 (as $v_{ini} = v_{fin}$), $4 \times 3 + \frac{1}{2} \times 4 (5 - 3) = \frac{1}{2} (2) (t - 5)^2$ i.e. $(t - 5)^2 = 16$ or t = 9 s.

For a particle in one-dimensional motion, the displacement s and velocity v are related as 3. vs = c, a constant. If acceleration $a = bs^n$ where b is a constant, then $n = bs^n$ (B) 1.5 (C) - 1.5(A) 3 (D) -3

- (D) <u>Based on One Dimensional Motion Q. 118</u> $v = c s^{-1}, a = v (dv | ds) = (c s^{-1}) (-c s^{-2}) = -c^2 s^{-3}.$ $\therefore n = -3.$ 3.
- For a projectile, the horizontal range is six times the greatest height. If the angle of 4. projection is θ , then tan $\theta =$ (A) /3/4 (B) 4/3 (C) 2/3 (D) 3/2
- 4. (C) Based on Projectile Motion Q. 18 $\tan \theta = 4H / R = 4H / 6H = 2 / 3.$
- A balloon starts rising from the earth's surface and has a constant vertical component of 5. velocity as *u*. Due to wind, it has a horizontal velocity component $v_x = ky^2$, where k is a constant and y is the height. Assuming it started from the origin, the equation of its trajectory is
 - (B) $2ux = ky^2$ (C) $uy = kx^2$ (D) $u^2x^2 = ky$ (A) $3ux = ky^3$
- (A) <u>Based on Projectile Motion Q. 8</u> y = ut, $dx / dt = v_x = k u^2 t^2$, $x = (ku^2 / 3) t^3 = (k / 3u) y^3$ or $3ux = ky^3$. 5.

2.

- 6. The displacement (s) time (t) relationship for a particle is $x = c (Tt^2 + t^3)$ where c, T are constants. Its average acceleration between t = T to t = 2T is (A) 5cT (B) 8cT (C) 11cT (D) 13cT
- 6. (C) <u>Based on One Dimensional Motion Q. 107</u> $v_t = (2Tt + 3t^2) c, v_T = 5T^2c, v_{2T} = 16T^2c. \therefore a_{avg} = (v_{2T} - v_T)/T = 11cT.$
- 7. A particle is at rest at position (0 m, 0 m). From t = 0, it has constant acceleration 2 ms⁻² towards positive x-axis. From t = 2 s, it has an additional acceleration of 4 ms⁻² along positive y-axis. At t = 5 s, the particle is at position

 (A) (13 m, 8 m)
 (B) (13 m, 18 m)
 (C) (25 m, 8 m)
 (D) (25 m, 18 m)
- 7. **(D)** <u>Based on Projectile Motion Q. 17</u> $x = \frac{1}{2} a_x t^2 = 25 \text{ m}, y = \frac{1}{2} a_y (t - t_1)^2 = 18 \text{ m}.$ \therefore (25 m, 18 m).
- 8. A bus starts from a bus stand and moves with constant acceleration 1 ms⁻². A man, at a distance D behind the bus when it starts, runs with a constant speed of 6 ms⁻¹ and manages to catch the bus. The maximum D for which this is possible is

 (A) 25 m
 (B) 18 m
 (C) 13 m
 (D) 9 m
- 8. (B) <u>Based on One Dimensional Motion Q. 176</u> To just catch, $v_{bus} = v_{man} = 6 \text{ ms}^{-1}$. $\therefore t = v_{man} / a_{bus} = 6 \text{ s. As } s_{man} = v_{man} t = 36 \text{ m}$, $s_{bus} = \frac{1}{2} a_{bus} t^2 = 18 \text{ m}$, $D_{max} = s_{man} - s_{bus} = 18 \text{ m}$.
- 9. The equation of a curve is $ky = x^2$ where k is a positive constant. Find the area between the curve and the x-axis between the lines x = 0 and x = 3k. (A) $27k^2$ (B) $27k^3$ (C) $9k^2$ (D) $9k^3$
- 9. (C) <u>Based on One Dimensional Motion Q. 56</u> $A = \sqrt{\frac{3^{k}}{2}} (x^{2} / k) dx = [x^{3} / 3k]^{3k} = 9k^{2}.$
- 10. For the curve $y = 3x^2 + 2$, $z = x^4 2x^3 + 2$, find (dz / dy) at x = 3. (A) 3 (B) 8 (C) 6 (D) 4
- 10. (A) Based on One Dimensional Motion Q. 36 $dz / dy = (dz / dx) / (dy / dx) = (4x^3 - 6x^2) / 6x$. At x = 3, dz / dy = (108 - 54) / 18 = 3.
- 11. A lift starts from rest and goes up with uniform acceleration a. After some time, it has uniform retardation 3a till it comes to rest. If the retardation time is t, the total height ascended is
 - (A) $12at^2$ (B) $6at^2$ (C) $3at^2$ (D) $8at^2$
- 11. (B) <u>Based on One Dimensional Motion Q. 165</u> $v_{max} = 3a \ t = a \ t_{acc}$ giving $t_{acc} = 3t$. $\therefore H = \frac{1}{2} \ a \ t_{acc}^2 + \frac{1}{2} (3a) \ t^2 = 6at^2$.

- 12. Ball B is dropped from a height at t = 0. After 2 s, ball C is thrown down from the same point with a speed v. After another 4 s, the balls collide. $g = 10 \text{ ms}^{-2}$. Then v (in ms⁻¹) = (C) 35 (D) 25 (A) 45 (B) 40
- 12. (D) <u>Based on One Dimensional Motion Q. 184</u> $\frac{1}{2} \cdot 10 \cdot (2+4)^2 = v \cdot 4 + \frac{1}{2} \cdot 10 \cdot 4^2$ giving v = 25 ms⁻¹.
- The acceleration a of a particle P at time t is a = bT bt where b & T are constants. P 13. starts with initial velocity bT^2 . The distance travelled till time T is (B) $(1/2) bT^3$ (A) $(3/2) bT^3$ (C) $(4/3) bT^3$ (D) $(1/3) bT^3$
- 13. (C) Based on One Dimensional Motion Q. 124 As dv / dt = bT - bt, $ds / dt = v = bTt - \frac{1}{2}bt^2 + bT^2$, $s = \frac{1}{2}bTt^2 - (bt^3 / 6) + bT^2t$. At t = T, $s = (4 / 3) bT^3$.

Two stones are thrown simultaneously at t = 0 from a height of 15 m with speed 20 ms⁻¹ 14. at 30° to the horizontal. They hit the ground at times $t = t_1 \& t = t_2 (> t_1)$. Take $g = 10 \text{ ms}^{-2}$. Then $t_2 : t_1 =$

(C)

(B) $2:\overline{1}$ (A) 3:1

- (D) 4:3
- 14. (A) Based on Projectile Motion Q. 44 $u_v = \pm 20 \sin 30^\circ = \pm 10 \text{ ms}^{-1}$. As $5t_1^2 + 10t_1 = 15 \& 5t_2^2 - 10t_2 = 15, t_1 = 1 \text{ s}$ & $t_2 = 3$ s.
- 15. A man can throw a stone vertically up to a height h. The maximum distance to which he can throw it on a horizontal level ground is
 - (A) *h* (B) 2h (C) 3h (D) 4h

15. (B) <u>Based on Projectile Motion Q. 24</u> $h = u^2 / 2g, R_{max} = u^2 / g = 2h.$

- 16. An object thrown vertically up from the ground is 25 m above the ground at two instants that are 4 s apart. Take $g = 10 \text{ ms}^{-2}$. The time of flight of the object is (B) $3\sqrt{6}$ s (C) $5\sqrt{2}$ s (A) 8 s (D) 6 s
- 16. (D) Based on One Dimensional Motion Q. 193 $H - 25 = \frac{1}{2}g (4/2)^2 = 20.$ $\therefore H = 45 \text{ m.} \therefore T = 2 \sqrt{(2H/g)} = 6 \text{ s.}$
- 17. Car C starts from rest with acceleration 6 ms⁻² which decreases to zero linearly with time in 10 s. After this, C moves at constant speed. The time needed for C to travel 500 m is
 - (A) 22 s (B) 20 s (C) 18 s (D) 16 s
- 17. (B) Based on One Dimensional Motion O. 143 For $0 \le t \le 10$, a = 0.6 (10 - t), $v = 0.3 (20t - t^2)$, $s = 0.1 (30t^2 - t^3)$. $\therefore v_{10} = 30 \text{ ms}^{-1}, s_{10} = 200 \text{ m}.$ $\therefore T = 10 + ((500 - s_{10}) / v_{10}) = 20 \text{ s}.$

18. For the curve $y = x^2 + 2x + 3$, the slope of the tangent to the curve at point *P* is 6. Then *P* lies on the line 3x + y =

(A) 24 (B) 20 (C) 17 (D) 15

18. (C) <u>Based on One Dimensional Motion Q. 43</u> dy / dx = 2x + 2 = 6 at x = 2, y = 11, 3x + y = 17.

19. Find the vector to be added to the vectors (5i + 3j + k) and (-7i - 4j - 2k) to get the resultant vector as a unit vector along positive z-axis.
(A) -2i - j - 2k
(B) -2i - j - k
(C) 2i + j + k
(D) 2i + j + 2k

- 19. (D) <u>Based on One Dimensional Motion Q. 13</u> $\mathbf{c} = \mathbf{r} - \mathbf{a} - \mathbf{b} = \mathbf{k} - (5\mathbf{i} + 3\mathbf{j} + \mathbf{k}) + (7\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}) = 2\mathbf{i} + \mathbf{j} + 2\mathbf{k}.$
- 20. Water drops fall at regular intervals from a tap 7.2 m above the ground. The third drop is leaving the tap at the instant the first drop touches the ground. Take g = 10 ms². Find the height above the ground of the second drop at that instant.
 (A) 5.4 m
 (B) 4.8 m
 (C) 2.4 m
 (D) 1.8 m
- 20. (A) <u>Based on One Dimensional Motion 0. 192</u> $7.2 = \frac{1}{2} g (2 \Delta t)^2$ and $7.2 - H = \frac{1}{2} g (\Delta t)^2 = 1.8$. $\therefore H = 5.4$ m.
- 21. A particle starts almost from rest from the origin and has acceleration *a* related to displacement *s* as $a = k^2 s$, *k* being a positive constant. Its velocity *v* is related to *s* as (A) v = ks (B) $v^2 = 2ks$ (C) $2v = k^2 s$ (D) $v^2 = ks^2$
- 21. (A) <u>Based on One Dimensional Motion Q. 132</u> $v dv / ds = a = k^2 s \text{ or } v dv = k^2 s ds.$ $\therefore v = ks.$
- 22. Vectors A, B, C are related as C = A + B and have magnitudes *a*, *b*, *c* respectively. If a = 5, b = 12; then
 (A) 5 ≤ c ≤ 13
 (B) 7 ≤ c ≤ 17
 (C) 5 ≤ c ≤ 12
 (D) 13 ≤ c ≤ 17
- 22. (B) <u>Based on One Dimensional Motion Q. 2</u> c lies between | b - a | (when A & B are oppositely directed) and (b + a)(when A & B are in same direction). $\therefore 7 \le c \le 17$.
- 23. A driver takes 0.25 s to apply the brakes after he sees an obstacle on the road. If he is driving at 20 ms⁻¹ and the brakes cause a deceleration of 8 ms⁻², the stopping distance after seeing an obstacle is
 - (A) 25 m (B) 22.5 m (C) 30 m (D) 27.5 m
- 23. (C) <u>Based on One Dimensional Motion Q. 181</u> $d_1 = u t_{react} = 5 \text{ m}, \ d_2 = u^2 / 2a = 25 \text{ m}, \ d_{total} = d_1 + d_2 = 30 \text{ m}.$

- 24. The displacement *s* of an object moving along a straight line is directly proportional to the cube of the time *t* of motion. Its acceleration *a* is directly proportional to (A) $s^{1/3}$ (B) $s^{1/2}$ (C) *s* (D) s^2
- 24. (A) <u>Based on One Dimensional Motion Q. 121</u> $s = bt^3$, $v = 3bt^2$, $a = 6bt \propto s^{1/3}$.
- 25. For a particle moving along a straight line, the displacement s (in m) at time t (in s) is $s = (t^3 6t^2 + 18t 13)$. When its acceleration is zero, the velocity (in ms⁻¹) is (A) 7 (B) 3.5 (C) 9 (D) 6
- 25. (D) <u>Based on One Dimensional Motion Q. 160</u> $v = 3t^2 - 12t + 18$, a = 6t - 12. As a = 0 when t = 2, v = 6 ms⁻¹.

MATHEMATICS

JM 2	2026	16 - JUNE - 2024	www.prernaclasses.com - 6 -
		$\therefore (2r-p): (r-p) = -6$	5k.
30.	(D)	Based on Basic of Algeb As $(4k^2 - 2)$: $(2k^2 - 1) =$	bra Q. 111 12k: 6k = 2, (6k + 1) p = 2 (3k + 1) r.
	(A)	U (B) k	$(\mathbf{C}) 5\mathbf{K} \qquad (\mathbf{D}) - 6\mathbf{K}$
	com	mon, then (2r - p) : (r - p)	(C) = (C) + (D) + (C)
30.	k (6.	$x^2 + 3rx) + rx + 2k^2 - 1 =$	= 0 and $6k (2x^2 + px) + px + 4k^2 - 2 = 0$ have both roots
		integer 1 – - 9, - 7 i.e	
		$ x + 4 > x + 8 , x \neq -8$. Integer $r = -9 = 7ie$	δ , x < 10. ∴ x + δ < 0, x ≠ - δ , - 10 < x < 10.
29.	(B)	Based on Basic of Algel	<u>bra Q. 190</u>
	(* *)		
<i>2</i> 9.	$ \Delta x $ (A)	$+ 0 / x + 0 > 2 \propto x < 1$ (B) 2	(C) 3 (D) more than 3
20	1.2~	1 8 1 / 1 x 1 8 1 2 9 1 1 1	10. The number of integer solutions for r is
		: 2 solutions.	
		When $x > 4$, $2x = 10 +$	x or x = 10. When $x < -4$, $-2x = 10 - x or x = -10$.
28.	(B)	$\frac{Basea \ on \ Basic \ of \ Aigel}{When - 4 < r < 4 \ I HS - 4}$	-8 while RHS > 10 i.e. no solution
20	(D)	Dagad on Dagin - f Al	
_0.	(A)	1 (B) 2	(C) 0 (D) infinite
28.	The	number of solutions of $ x $	-4 + x + 4 = 10 + x is
		or $5ab - 2a^2 - 3b^2 = 1$	i.e. $2a^2 + 3b^2 = 5ab - 1$.
27.	(2)	$E_1 - 3E_2$ and $E_1 - 2E_2$ gi	we $x = 2 / (2a - 3b) = 2 (b - a)$. $\therefore (2a - 3b) (b - a) = 2$
27	(B)	Based on Basic of Algel	bra O. 100
	(A)	5ab + 1 (B) $5ab - 5ab - 5a$	-1 (C) $ab + 5$ (D) $ab - 5$
27.	3 <i>x</i> ²	$+2ax + 4 = 0$ and $x^2 + bx$	$x + 2 = 0$ have a common root. Then $2a^2 + 3b^2 =$
		which has non-real, distin	nct roots.
		As $(p-q)^2 + (q-r)^2 + (q-r)^2$	$(r-p)^2 = 0, p = q = r. \therefore x^2 + x + 1 = 0$
26.	(C)	Based on Basic of Algel	bra O. 30
	(C)	non-real & distinct	(D) non-real & equal
	(A)	real & distinct	(B) real & equal
20.	root	is of $px^2 + ax + r = 0$ are	p = pq + qr + rp, then the the
26.	If <i>p</i> .	q, r are non-zero. real num	mbers such that $p^2 + q^2 + r^2 = pq + qr + rp$, then th

31. The sum of all the solutions of $[x] + 2\{x\} = 12.4$, where $[\cdot] \& \{\cdot\}$ are integer part & fractional part respectively, is (A) 12.2 (B) 16.4 (C) 19.8 (D) 23.9 31. (D) Based on Basic of Algebra Q. 201 $\{x\} = 0.2 \text{ or } 0.7 \text{ giving } [x] = 12 \text{ or } 11. \therefore x = 12.2 \text{ or } 11.7.$ 32. $x^3 - 12x + 16 = 0$ has roots p, q, r. The equation with roots $2(q+r)^2 / p^3$, $2(r+p)^2 / q^3$, $2(p+q)^2 / r^3$ is (A) $2x^3 - 3x^2 + 1 = 0$ (B) $2x^3 - 3x + 1 = 0$ (D) $2x^3 + 3x^2 - 1 = 0$ (C) $2x^3 + 3x - 1 = 0$ 32. (A) Based on Basic of Algebra Q. 131 **PRERNA CLASSES** As p + q + r = 0, $2(q + r)^2 / p^3 = 2(-p)^2 / p^3 = 2 / p$. Equation is $(2 / x)^3 - 12 (2 / x) + 16 = 0$ or $2x^3 - 3x^2 + 1 = 0$. 33. If (1 + p) is a root of $x^2 + px + (2 + 2p) = 0$, then difference of roots is (C) 3.5 (A) 0 **(B)** 1 (D) 2.5 33. (D) Based on Basic of Algebra Q. 63 (2+2p)/(1+p) = 2 is a root. $\therefore 4 + 2p + 2 + 2p = 0$ or $1 + p = -\frac{1}{2}$. \therefore Difference of roots = 2.5. 34. If the roots of $2x^2 - 3x + 5 = 0$ are reciprocals of the roots of $ax^2 + bx + 4 = 0$, then (2a + b) =(C) 8 (A) 14 11 (D) 0 34. (A) Based on Basic of Algebra Q. 83 Reciprocals are roots of $5x^2 - 3x + 2 = 0$ or a = 10, b = -6. The sum of all the solutions of (3x - 1) = |2x - 4| is 35. (B) – 2 (A) 1 (C) 4 (D) 0 35. (A) Based on Basic of Algebra Q. 173 $(3x - 1) = \pm (2x - 4)$ for x = 1 or -3. Only x = 1 satisfies.

	36.	The number of integers x satisfying $ x^2 - 2x - 8 \le 0$ is									
		(A)	3	(B) 5	(C)	7	(D) 9				
	36.	(C)	<u>Based on Based</u> $ (x-1)^2 - 1 $	sic of Algebric $\leq 8, (x-1)^2$	$xa \ Q. \ 193$ ≤ 9. $\therefore (x - 1)$	$) = 0, \pm 1, \pm 2$, ± 3 i.e. 7 sol	utions.			
	37.	The	numbers of int	tegers x for w	hich $(\sqrt{x-3})$	$+\sqrt{(21-4x)^2}$) is real is	l.			
		(A)	0	(B) 2	(C)	3	(D) 5				
	37. (C) <u>Based on Basic of Algebra Q. 163</u>										
			$\sqrt{(x-3)}$ is rea	al for $x \ge 3$, $\sqrt{10}$	(21 - 4x) is re	al for $x \le 5.25$					
	Integers satisfying both are {3, 4, 5} i.e. 3 integers.										
S	38.	$x^{3} +$	$3x^2 - x - 3 = 0$	0 has roots p ,	q, r. Then p^2	$+q^2 + r^2 + 2$	2pqr =				
SSE		(A)	5	(B) 17	(C)	3	(D) 11				
Ă	38.	(B)	Based on Bas	sic of Algebr	a O. 124	Y					
C			$p^{2} + q^{2} + r^{2} + 2pqr = (p + q + r)^{2} - 2(pq + qr + rp) + 2pqr$								
A			$=(-3)^2-2(-$	- 1) + 2 (3) =	17.						
R	39.	If the least value of $f(x) = 4x^2 - 20x + k$ is 32, then $k =$									
RE		(A)	64	(B) 57	(C)	32	(D) 7				
Δ	- 39. (B) <u>Based on Basic of Algebra O. 274</u>										
			f(x) = (2x - 5)	$)^{2} + (k - 25).$	$\therefore k = 25$	+ 32 = 57.					
	40.	The	sum of all the	e solutions of	$\{4 \ \{x\} = [x] \$	– 1, where [•]] & {·} are integ	ger part &			
		fract	tional part resp	ectively, is							
		(A)	11.5	(B) 10.5	(C)	7.0	(D) 4.5				
		Ĺ									
	40.	(A)	Based on Bas	<u>sic of Algebr</u>	<u>a Q. 205</u>						
			$\{x\} = 0, \frac{1}{4}, \frac{1}{2}$, ³ ⁄4. Correspo	onding $[x] = 1$	$, 2, 3, 4. \therefore x$	x = 1, 2.25, 3.5, 4	.75			

with S = 11.5.

	41.	Let <i>log</i>	$g_2 x + \log_2 y + (y_2 / x) =$	· log 4	$z = 2, \log_{9} x +$	$\log_{3} y + \log_{3} z = 2, l$	$\log_4 x + \log_2 y + \log_4 z =$	= 2.				
		(A) 2	27	(B)	16	(C) 9	(D) 54					
	41.	(C) <u>H</u>	Based on Base $z^2y^2z = 16, xy^2$	<u>ic of 2</u> z ² = 8	<u>Algebra Q. 24</u> 31, xy ² z = 16.	$\therefore x = 1, yz = 9.$	S					
	42.	If a (x	$(x-1)^2 + b (x^2)$	-3x	$(+2) + x - a^2 =$	= 0 has more than tw	vo roots, then $(a + 3b) =$	=				
		(A) ()	(B)	1	(C) 2	(D) - 1					
	42. (C) <u>Based on Basic of Algebra Q. 86</u> $(a + b) x^2 + (1 - 2a - 3b) x + (a + 2b - a^2) = 0$ is an identity.											
NA CLASSES												
			a + b = 1 - 1	2a -	3b = a + 2b - b	$a^2 = 0.$ $\therefore a = -$	1, b = 1.					
	43.	$x^{2} + k$	x - 13 = 0 and	$d x^2 -$	3kx + 35 = 01	have a common root	. The smallest possi	ble				
		value	of <i>k</i> is			K V'						
		(A) 1	.0	(B)	3	(C) 0	(D) – 12					
	43.	(D) <u>I</u>	Based on Base $0 = 3 (x^2 + kx - x)$	<u>ic of 2</u> - 13)	Algebra Q. 97 + $(x^2 - 3kx + 3)$	$(x^2 - 1)$. $\therefore x$	$= \pm 1, k = \pm 12.$					
Ш	11	If r^2	$2r \pm 5 = 0$ by	as roo	to n & a then	$(n-2)^2 (a-2)^2 -$						
R	44.	(A) 1	-2x + 5 = 0 has -25	(B)	25	(p-2) (q-2) = (C) 5	(D) 1					
		<u> </u>	h and a second s	K		、 <i>/</i>	· ·					
	44.	(B) <u>I</u>	Based on Base	$\frac{1}{5}$	<u>Algebra Q. 48</u>	n Similarly a 2 -	5/a and					
		F (As $p^2 - 2p + 5 = 0$, $p - 2 = -5 / p$. Similarly, $q - 2 = -5 / q$ and $(p - 2)^2 (q - 2)^2 - 5^4 / (pq)^2 - 5^4 / 5^2 - 25$									
		4		1	· (P4)							
	45.	The n	umbers of inte	gers x	x satisfying $ x $	$ < 7$ and $(x^2 + 3x + 4)$	4) / $(1 - x) > 1$ is					
		(A) 3		(B)	4	(C) 6	(D) 7					
	45.	(B) <u>I</u>	Based on Basi	ic of 1	<u>Algebra Q. 14</u>	<u>8</u>						
		(.	$x^2 + 4x + 3)/$	$(1 - x)^{-1}$	(x) > 0. (x + 3) ((x+1)(x-1) < 0.	x < -3 or -1 < x < 1	•				
		•	x = -6, -5,	, – 4,	0 i.e. 4 values.							

- 46. If both roots of $x^2 + 2x + b = 0$ are greater than *b*, then complete set of values of *b* is (A) 1 < b < 3 (B) -1 < b < 1 (C) -3 < b < -1 (D) b < -3
- 46. (D) <u>Based on Basic of Algebra Q. 318</u> $s > 2b, D \ge 0, f(b) > 0$ i.e. $-2 > 2b, 4 - 4a \ge 0, b(b+3) > 0.$ $\therefore b < -1, b \le 1, b < -3$ or b > 0 i.e. b < -3.
- 47. The roots of $x^2 + 3kx + (3k + 2) = 0$ are in ratio 2 : 1. Then largest possible value of k is (A) -2 (B) 1/2 (C) 2 (D) -1/2
- 47. (C) <u>Based on Basic of Algebra Q. 59</u> p + 2p = -3k and $p \cdot 2p = 3k + 2$ i.e. $2k^2 - 3k - 2 = 0$ i.e. $k = 2, -\frac{1}{2}$.

48. The roots of $x^2 + 3x + 2 = 0$ are also the roots of $x^4 - px^2 + q = 0$. The largest root of $x^4 - px^2 + q = 0$ is (A) 2 (B) 3 (C) 4 (D) 5

- 48. (A) <u>Based on Basic of Algebra 0. 139</u> -1, -2 satisfy $x^4 - px^2 + q = 0$. $\therefore p = 1 + q \& 4p = 16 + q$. $\therefore p = 5, q = 4$. $\therefore x^4 - 5x^2 + 4 = 0$ or $(x^2 - 1)(x^2 - 4) = 0$ i.e. $x = \pm 1, \pm 2$. \therefore Largest root is 2.
- 49. If $\log_{49} 2 = x$, then $\log_7 56 =$ (A) 2 + x (B) 1 + 6x (C) 3 - 8x (D) 7x - 4
- 49. (B) <u>Based on Basic of Algebra Q. 229</u> $\log_7 56 = 1 + 3 \log_7 2 = 1 + 6 \log_{49} 2 = 1 + 6x.$
- 50. Both roots of $x^2 2kx + k^2 9 = 0$ are less than $\sqrt{26}$. The greatest integral value of k is (A) 2 (B) 5 (C) 10 (D) 26
- 50. (A) <u>Based on Basic of Algebra Q. 309</u> $(x-k)^2 = 9$. $\therefore x = k \pm 3$. As $k + 3 < \sqrt{26}$, $k_{max} = 2$.

CHEMISTRY

How many g of KCl would have to be dissolved in 60 H_2O to give 20% by weight of 51. solution ? (C) 11.5 g (D) 31.5 g (A) 15 g (B) 1.5 g 51. (A) % by weight = $\frac{\text{weight of solute}}{\text{weight of solution}} \times 100 \text{ or } 20 = \frac{w}{(w+60)} \times 100 \text{ or } w = 15 \text{ g}$ 52. What volume of H_2 at 273 K and 1 atm will be consumed in obtaining 21.6 g of elemental boron (at. mass 10.8) from the reduction of boron trichloride with H_2 ? (A) 44.8 L (B) 22.4 L (C) 89.6 L (D) 67.2 L 52. **(D)** $2BCl_3 + 3H_2 \longrightarrow 2B + 3HCl$ $2 \times 10.8 \text{ g} B = 3 \times 22.4 \text{ L} H_2$:. $21.6gB = \frac{3 \times 22.4 \times 21.6}{2 \times 10.8} = 67.2 \text{ L } H_2$ cC + dD, which is wrong ? 53. In a gaseous reaction of the type $aA + bB \longrightarrow$ (A) a litre of A combines with b litre of B to give C and D (B) a mole of A combines with b mole of B to give C and D (C) a g of A combines with b g of B to give C and D (D) a molecules of A combines with b molecules of B to give C and D 53. (C) Stoichiometry represents mole ratio or volume ratio of reactants and products. A metal oxide has the formula $Z_{2,O_{2}}$. It can be reduced by hydrogen to give free metal 54. and water. 0.1596 g of the metal oxide requires 6 mg of hydrogen for complete reduction. The atomic weight of the metal is : (B) 159.60 (A) 27.90 (C) 79.80 (D) 55.80 54. (D) Meq. of oxide = Meq. of H; $\frac{0.1596}{E+8} = \frac{6 \times 10^{-3}}{1} \qquad \therefore E = 18.6$:. atomic wt. = $18.6 \times 3 = 55.8$ (:: valence = 3) 55. A mixture of 10 cm³ of oxygen and 50 cm³ of hydrogen is sparked continuously. What is the maximum theoretical decrease in volume? (All gas volumes measured at 298 K and standard atmospheric pressure) (A) 10 cm^3 (B) 15 cm^3 (C) 20 cm^3 (D) 30 cm^3 55. **(D)** $2H_2(g) + O_2(g) \longrightarrow 2H_2O(l)$ O_2 is the limiting reagent Volume of H_2 used = $2 \times 10 = 20$ cm³ Therefore, maximum decrease in volume = Volume of gases reacted = $10 + 20 = 30 \text{ cm}^3$ **JM 2026** 16 - JUNE - 2024 www.prernaclasses.com - 11 -

	56.	For complete oxidation, 1 mole of an organic compound requires 3 mol of oxygen gas. What could be the formula of the compound ? (A) $CH CHO$ (B) $CH CH OH$ (C) $CH CH$ (D) $CH COOH$							
	56.	(B) $CH_3CH_2OH + 3O_2 \longrightarrow 2CO_2 + 3H_2O$ (D) $CH_3CU_3CU_3$							
	57.	What percent of free SO_3 can be obtained from 100 g oleum, that is labelled with "113.5% H_2SO_4 "? (A) 13.5% (B) 40% (C) 60% (D) 80%							
	57	(A) 13.5% (B) 40% (C) 00% (D) 60% (C) 113.5% suggests total mass of pure HSO present in 100 g							
	57.	When 13.5 g of H_2O is added to oleum, that combines with free SO_3 and 113.5 g H_2SO_4 .							
		$H_2O + SO_3 \longrightarrow H_2SO_4$							
S		0.75 mol of H_2O will combine with 0.75 mol = 60 g of SO_3							
Ш	58.	0.8 mole of a mixture of CO and CO_2 requires exactly 40 gram of NaOH in solution for							
ŝ		complete conversion of all the CO_2 into Na_2CO_3 . How many moles more of $NaOH$ would it require for conversion into $NaCO_2$ if the mixture (0.8 mole) is completely							
		oxidised to CO_2 ?							
C		(A) 0.2 (B) 0.6 (C) 1 (D) 1.5							
Ą	58.	(B)							
2	59.	Ratio of moles of Fe (II) oxidised by equal volumes of equimolar $KMnO_4$ and $K_2Cr_2O_7$							
Ш И		solution in acidic medium will be : (A) $5 \cdot 3$ (D) $5 \cdot 6$							
Ц	50	(A) $5:5$ (B) $1:1$ (C) $1:2$ (D) $5:6$							
	59.								
	60.	(i) 1 Molecule of oxygen (ii) 1 atom of Nitrogen							
		(ii) 1 mole of water (iv) 1×10^{-10} g of iron							
		(A) $ii < i < iii < iv$ (B) $i < ii < iv < iii$							
		(C) $ii < i < iv < iii$ (D) $i < ii < iii < iv$							
	60.	(C) <u>Based on Mole concept : Q. 8</u> (i) Molecules = mole $\times 6 \times 10^{23}$ 1 = (Given weight / 32) $\times 6 \times 10^{23}$ Given weight = $(32 / 6) \times 10^{-23} = 5.3 \times 10^{-23}$ g							
		(ii) 1 atom of $N = (14 / 6) \times 10^{-23} = 2.3 \times 10^{-23}$ g							
		(ii) Those of $H_2 O = 18$ g (iv) weight of $Fe = 10^{-10}$ g							

61. Which of the following contains maximum number of atoms
(A) 4 g of
$$H_2$$
 (B) 16 g of Q_2 (C) 28 g of N_2 (D) 18 g of H_2O
61. (A) Based on Mole concept : O. 9
For $H_2 = (4/2) \times N_A \times 2 = 1 N_A$
For $N_2 = (28/28) \times N_A \times 2 = 1 N_A$
For $N_2 = (28/28) \times N_A \times 2 = 1 N_A$
For $N_2 = (28/28) \times N_A \times 2 = 1 N_A$
For $H_2O = (18/18) \times N_A \times 3 = 3 N_A$
62. How many moles of O are present in 4.9 g of H_2PO_2 ?
(A) 0.4 mole (B) 0.8 mole (C) 1 mole (D) 0.2 mole
63. (D) Based on Mole concept : O. 13
 $H_2PO_4 = 1 \times 3 + 31 + 16 \times 4 = 98$ g
 98 g = 1 mole of $H_2PO_4 = 4$ mole of O
 4.9 g of $H_2PO_4 = (4.9/98) \times 4 = 0.2$ mole of O
 4.9 g of $H_2PO_4 = (4.9/98) \times 4 = 0.2$ mole of O
(A) 300 g (B) 200 g (C) 5×10^2 g (D) 700 g
63. (B) Based on Mole concept : O. 15
 3.0115×10^9 molecules of $X = 10^{12}$ g
 6.023×10^{23} molecules of $X = 10^{12}$ g
 6.023×10^{23} molecules of $X = 10^{12}$ g
 6.023×10^{23} molecules of $X = 10^{12}$ g
 6.023×10^{23} molecules of $X = 10^{12}$ g
 6.023×10^{23} molecules of $X = 10^{12}$ g
 $(A) 240$ (B) 120 (C) 30 (D) 60
64. (B) Based on Mole concent : O. 30
Mole = $\frac{\text{Given volume}}{22.4}$
 $\frac{\text{Given volume}}{22.4}$
 $M_2 = \frac{24 \times 60}{22.4}$ $\frac{60}{M} = \frac{5.6}{22.4}$
 $M_2 = \frac{22.4 \times 60}{22.4}$ $M = 2240 \text{ g}$.
ND = Mol, mass / 2 = 240 / 2 = 120.
65. (A) Based on Mole concent : O. 33
Equivalent mass of metal $= \frac{10}{(14-10)} \times^{8} = 20g$
 \therefore Equivalent mass of metal $= \frac{10}{(14-10)} \times^{8} = 20g$
 \therefore Equivalent mass of metal $= \frac{10}{(14-10)} \times^{8} = 20g$
 \therefore Equivalent mass of metal $= \frac{10}{(14-10)} \times 8 = 20g$
 \therefore Equivalent mass of metal $= 28$.
Equivalent mass of metal $= 20 + 17 = 37$.

	66.	0.32 g of metal gave on treatment with an acid 112 ml of hydrogen at NTP. Calculate the equivalent weight of the metal :						at NTP. Calculate the
		(A)	58 (B)	11.2	(C)	24	(D) /	32
	66.	(D)	Based on Mole con	<u>cept : Q. 35</u>				5
			$Eq.wt = \frac{mass of meta}{Volume in ml}$	$\frac{\mathrm{d} \times 11200 \mathrm{ml}}{\mathrm{of Hydrogen}} = $	0.32× 112 ×	$\frac{11200}{100} = 32$		es l
	67.	Vap	our density of a meta	al chloride is 1	18 . 5.	The equivalent	mass	of the metal is 4. Its
		aton	nic mass would be	ſ	$\langle \mathbf{C} \rangle$	•		2
		(A)	3 (B)	0	(C)	9		-2
	67.	(B)	Based on Mole con Molecular weight of Let valency of metal	$\frac{cept: Q. 35}{matal chloride}$ $x = x$	= 11	8.5 × 2 = 237	X	
)			Formula = MCl_x	Mol	ecula	r weight $= 237$		
)			$(4 \times x) + (35.5 \times x)$	= 237 39.	5 x = 0	237 $x = 0$	(237 /	39.5) = 6
)	68.	The	oxidation number of	Al in LiAlH ₄ is	K	X		
		(A)	+ 3 (B)	-3	(C)	+ 1	(D)	+ 4
)	68.	(A)	Based on Redox Q	<u>9. 15</u>	7			
			1 + a + 4	$\begin{array}{l} \text{er of } Al = a \\ \times (-1) = 0 \end{array}$	Y			
1			1 + a - 4		~			
			a - 3 =	0	4			
1	(0)	CL	$a = \pm 3$					
I	69.	(A)	Oxidation of hydrogen into	proton 1s :	(B)	Acid - base re	action	
		(\mathbf{C})	Reduction of hydro	gen	(D)	Displacement	reaction	on
	69.	(A)	Based on Redox Q	<u>. 24</u>				
			$H^{\circ} \rightarrow H^{1+} + e^{-}$					
	70	. /	[loss of $e^- = \text{oxidati}$	onj				
	70.	$\ln w$	which reaction H_2O_2 a Ag $O + HO \rightarrow 2A$	cts as reducing $A_{\sigma} + H_{O} + O$	g agen (B)	t? $2KI + HO \rightarrow$	2K(OH + I
		(\mathbf{C})	$PbS + 4H_2O_2 \rightarrow Pb$	$bSO_4 + 4H_2O + O_2$	(D)	$H_2O_2 + SO_2 - H_2O_2 + H_2O_2 $	$\rightarrow H_2S$	O_4
	70.	(A)	Based on Redox Q	<u>, 25</u>			2	•
			Ag^+ is reduced to Ag^+	2				
	71.	Wha	at is the molarity of 2	2.4 V of H_2O_2	?		_	
		(A)	4 (B)	2	(C)	1 (D)	6	
	71.	(B)	Based on Redox Q	<u>9. 27</u> 1. – volumo st	ronati	$\sqrt{56} - 224$	56-	- 1 N
			Since H_1O_1 is dibas	$J_y = volume st$ bic $\therefore M = ($	(4 / 2)	= 2	5.0 -	1 1
			2 2					

- 72. Calculate the equivalent mass of potassium permanganate $(KMnO_4)$ in neutral medium (A) EW = (M / 5) (B) EW = (M / 3) (C) EW = (M / 1) (D) EW = (M / 7)
- 72. (B) <u>Based on Redox Q. 47</u>

In neutral medium $Mn^{7+} + 3e^- \rightarrow Mn^{4+}$ $\therefore EW = \frac{M}{3}$.

73. Which of the following is a redox reaction ?

- (A) $NaCl + KNO_3 \rightarrow NaNO_3 + KCl$
- (B) $CaC_2O_4 + 2HCl \rightarrow CaCl_2 + H_2C_2O_4$
- (C) $Mg(OH)_2 + 2NH_4Cl \rightarrow MgCl_2 + 2NH_4OH$
- (D) $Zn + 2AgCN \rightarrow 2Ag + Zn(CN)_2$
- 73. (D) <u>Based on Redox Q. 22</u> $Zn \rightarrow Zn^{2+} + 2e^{-}$ $Ag^{+} + e^{-} \rightarrow Ag$ In A, B and C, O.N does not change

74. The oxidation states of sulphur in the anions SO_3^{2-} , $S_2O_4^{2-}$ and $S_2O_6^{2-}$ follow the order

(A)
$$S_2 O_4^{2-} < S O_3^{2-} < S_2 O_6^{2-}$$

(B) $S O_3^{2-} < S_2 O_4^{2-} < S_2 O_6^{2-}$
(C) $S_2 O_4^{2-} < S_2 O_6^{2-} < S O_3^{2-}$
(D) $S_2 O_6^{2-} < S_2 O_4^{2-} < S O_3^{2-}$

- 74. (A) <u>Based on Redox Q. 33</u> $S_2O_6^{2-}: 2x - 12 = -2 \Rightarrow x = 5$ $SO_3^{2-}: x - 6 = -2 \Rightarrow x = 4$ $S_2O_4^{2-}: 2x - 8 = -2 \Rightarrow x = 3$
- 75. The number of electrons lost in the following change is

$$Fe + H_2 O \to Fe_3 O_4 + H_2$$
(A) 2 (B) 4 (C) 6 (D) 8

75. (D) <u>Based on Redox Q. 34</u> $3Fe^{\circ} \rightarrow (Fe^{+(8/3)})_3 + 8e^{-}$ $2H^+ + 2e^{-} \rightarrow H_2 \qquad [\times 4]$ $\overline{3Fe + 4H_2O \rightarrow Fe_3O_4 + 4H_2}$

RERNA CLASSES